Analysis of Homolog Distributions to Better Understand Nature of Loads

SRRTTF Data Synthesis Workshop

May 30, 2019

Objective

- Compare homolog patterns to gain understanding of the nature of the load
 - Source mechanisms
 - Atmospheric deposition, Lake Coeur d'Alene
 - In-river response
- Won't provide definitive answers, but will provide data for "weight of evidence" approach

Example Outcomes

- If homolog patterns vary seasonally at a given location
 - Would lend support to the theory that loads vary seasonally
- If homolog patterns in atmospheric deposition are different than those in Lake Coeur d'Alene
 - Would lend support to the theory something other than atmospheric deposition is driving PCBs in the lake

Measuring Similarity

- Calculated using cosine theta (\cos - θ) method
 - Quantitative method for assessing similarity between matrices (e.g. homolog patterns)
- Theory
 - Given two vectors of attributes, A and B, the cosine similarity is represented as:

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Measuring Similarity

- Cos- θ is analogous to a correlation coefficient
 - Exact comparison, $\cos \theta = 1$
 - Completely different patterns, $\cos \theta = 0$

Similarity Analyses Conducted

- Lake Coeur d'Alene seasonality
 - Does the nature of the load entering the river from Lake CdA vary seasonally?
- Atmospheric deposition
 - How do deposition patterns compare to patterns in delivery mechanisms?
- In-river seasonality
 - Does the nature of concentrations in the river vary seasonally?

Lake Coeur d'Alene Seasonality

- Assess seasonal variability of homolog distributions entering the river from Lake Coeur d'Alene
 - Different patterns by season may imply seasonally-varying loading sources

Lake CdA Seasonality: Approach

Calculate similarity of homolog distributions for three different

seasonal periods

- Spring high flow
- -Summer low flow
- Winter moderate flow

Lake CdA Seasonality: Available Data

- 2014 Confidence testing
 - -9 samples May 23, 2014
- 2014 Synoptic survey
 - -7 samples August 12-23, 2014
- 2016 Monthly monitoring
 - –One sample each in March, April, May, October, November, December*

^{*}excluded due to blank contamination

Lake CdA Seasonality: Results

• Cos- θ correlations by season

	Spring	Summer	Winter
Spring	1.00		
Summer	0.85	1.00	
Winter	∵*	*	*

^{*}Only sample available from winter season had excessive blank contamination

Lake CdA Data Usability

- High variability in patterns among samples in a given season
 - −Cos-Θ=0.69 among samples within a season

Lake CdA Data Usability

High variability in patterns depending on blank correction

method used

Lake CdA Seasonality: Conclusions

- We can't say anything with reasonable certainty about seasonality of Lake CdA homolog patterns
- Did we learn anything?
 - There is a limit to what we can say about patterns when ambient concentrations are that low
 - We could potentially glean more information using a less severe blank correction method
- Will additional monitoring help?
 - Not likely, until analytical methods improve

Similarity Analyses Conducted

- Lake Coeur d'Alene seasonality
 - Does the nature of the loading from Lake CdA to the river vary seasonally?
- Atmospheric deposition
 - How do deposition patterns compare to delivery mechanisms?
- In-river seasonality
 - Does the nature of concentration in the river vary seasonally?

Atmospheric Deposition Correlations

- How do homolog patterns in atmospheric deposition compare to patterns in delivery mechanisms?
- Deposition
 - 2014 EAP atmospheric deposition study
- Delivery mechanisms
 - Groundwater up-gradient of Kaiser
 - City of Spokane stormwater
 - -Lake Coeur d'Alene

Atmospheric Deposition: Available Data

- Four quarterly samples over 2016-2017
- Three sites
 - Augusta: urban-commercial
 - Monroe: urban-residential
 - Turnbull NWR: background
- Pilot study
 - Variability in field replicates

Atmospheric Deposition: Groundwater Data

 77 samples from four wells up-gradient of Kaiser

Atmospheric Deposition: Stormwater Data

 Six samples from Cochran basin for four quarterly monitoring events in 2016-2017

Atmospheric Deposition Correlation Results

	Cos-Ө		
	Augusta	Monroe	Turnbull
Lake CdA	*	*	*
Up-gradient Groundwater	0.93	0.72	0.51
Stormwater	0.91	0.66	0.38

- Lake Coeur d'Alene excluded due to low concentrations
- Monroe and Turnbull sites do not match either stormwater or upgradient groundwater
- Better correlation with Augusta site

Atmospheric Deposition: Conclusions

- Ecology atmospheric deposition study was a pilot project, so available data should be used cautiously
- Poor correlation exists between deposition patterns at Monroe/ Turnbull sites and delivery mechanisms
- Will more data help?
 - Yes, but probably best left to Ecology
 - Too complex a topic for the Task Force to lead

Similarity Analyses Conducted

- Lake Coeur d'Alene seasonality
 - Does the nature of the loading from Lake CdA to the river vary seasonally?
- Atmospheric deposition
 - How do deposition patterns compare to delivery mechanisms?
- In-river seasonality
 - Does the nature of concentration in the river vary seasonally?

In-River Seasonality: Data Considered

- Focus on stations sampled for all synoptic surveys, plus monthly
 - Plante's Ferry
 - 3 Spring samples
 - 15 Summer samples
 - 1 winter sample
 - Spokane USGS gage
 - 5 Spring samples
 - 14 Summer samples
 - 1 winter sample

Plante's Ferry Analysis

- Very high similarity between spring and summer
 - $-\cos-\Theta=0.964$
- Lower similarity between winter and other seasons
 - -Summer-winter Cos-Θ=0.857
 - -Spring-winter Cos-Θ=0.887
 - -Single winter sample

USGS Gage Analysis

- High similarity between spring and summer
 - $-\cos-\Theta=0.968$
- Lesser similarity between winter and other seasons
 - -Summer-winter Cos-Θ=0.71
 - − Spring-winter Cos-Θ=0.80
 - -Single winter sample

In-River Seasonality: Conclusions

- Not seeing a marked difference in spring vs. summer homolog patterns at Plante's Ferry and USGS gage
 - No strong evidence of seasonally varying loads
- Insufficient data to say anything about winter flow
- Will additional monitoring help?
 - Yes, if we want to rigorously assess seasonality